EconPapers    
Economics at your fingertips  
 

Fine-Tuning Arabic Large Language Models for improved multi-turn dialogue: A blueprint for synthetic data generation and benchmarking

Ahmed Mahmoud Misbah, Mohamed Farouk and Mustafa AbdulAzim

PLOS ONE, 2026, vol. 21, issue 2, 1-34

Abstract: The rapid evolution of Large Language Models (LLMs) has fueled increasing interest in developing Arabic conversational systems capable of sustaining coherent multi-turn dialogues. However, progress remains constrained by the scarcity of large-scale, diverse, and high-quality datasets specifically designed for Arabic multi-turn interaction. This study presents a reproducible methodology for constructing such a dataset through structured prompting of an instruction-tuned Arabic LLM (Jais-13b-chat), yielding 43,316 multi-turn conversations across 93 topics and 151 countries. Two pre-trained Arabic language models (ArabianGPT-08B-V2 and AraGPT2-mega) were fine-tuned on this synthetic data and benchmarked against multilingual instruction-tuned baselines using a comprehensive evaluation framework combining automatic metrics (Perplexity and RAVEN) with structured human evaluation. Fine-tuned ArabianGPT-08B-V2 achieved the highest RAVEN score (0.823) for cross-model comparison, outperforming both fine-tuned AraGPT2-mega and instruction-tuned baselines while maintaining strong within-model perplexity (9.4). Human evaluation by two independent raters demonstrated acceptable inter-rater reliability (Cohen’s κ = 0.229–0.739) with positive rank correlations (Spearman ρ = 0.424–0.759), yielding overall quality scores of 4.04–4.34 on a five-point scale. These findings demonstrate that high-quality, LLM-generated synthetic data effectively improves Arabic conversational models, providing a scalable, resource-efficient blueprint for dialogue systems in low-resource and culturally specific settings.

Date: 2026
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0341905 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 41905&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0341905

DOI: 10.1371/journal.pone.0341905

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2026-02-15
Handle: RePEc:plo:pone00:0341905