EconPapers    
Economics at your fingertips  
 

Nonparametric and semiparametric regression model selection

Jiti Gao and Howell Tong

MPRA Paper from University Library of Munich, Germany

Abstract: It is known that semiparametric time series regression is often used without checking its suitability and compactness. In theory, this may result in dealing with an unnecessarily complicated model. In practice, one may encounter the computational difficulty caused by the spareness of the data. This is partly because the curse of dimensionality problem may still arise from using a semiparametric time series regression model. This paper suggests that in order to provide more precise predictions we need to choose the most significant regressors for both the parametric and nonparametric time series components. We develop a novel cross-validation based model selection procedure for the choice of both the parametric and nonparametric time series components in semiparametric time series regression, and then establish some asymptotic properties of the proposed model selection procedure. In addition, we demonstrate how to implement the model selection procedure in practice through using both simulated and real examples. Our empirical studies show that the proposed cross-validation selection procedure works well numerically.

Keywords: Linear model, model selection; mixing process; nonlinear time series; nonparametric regression; semiparametric regression; strictly stationary process; variable selection (search for similar items in EconPapers)
JEL-codes: C14 (search for similar items in EconPapers)
Date: 2002-05, Revised 2004-02
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://mpra.ub.uni-muenchen.de/11987/1/MPRA_paper_11987.pdf original version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:11987

Access Statistics for this paper

More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().

 
Page updated 2025-03-19
Handle: RePEc:pra:mprapa:11987