A Simple Test for the Absence of Covariate Dependence in Hazard Regression Models
Arnab Bhattacharjee
MPRA Paper from University Library of Munich, Germany
Abstract:
This paper extends commonly used tests for equality of hazard rates in a two-sample or k-sample setup to a situation where the covariate under study is continuous. In other words, we test the hypothesis that the conditional hazard rate is the same for all covariate values, against the omnibus alternative as well as more specific alternatives, when the covariate is continuous. The tests developed are particularly useful for detecting trend in the underlying conditional hazard rates or changepoint trend alternatives. Asymptotic distribution of the test statistics are established and small sample properties of the tests are studied. An application to the e¤ect of aggregate Q on corporate failure in the UK shows evidence of trend in the covariate e¤ect, whereas a Cox regression model failed to detect evidence of any covariate effect. Finally, we discuss an important extension to testing for proportionality of hazards in the presence of individual level frailty with arbitrary distribution.
Keywords: Covariate dependence; Continuous covariate; Two-sample tests; Trend tests; Proportional hazards; Frailty/ unobserved heterogeneity; Linear transformation model (search for similar items in EconPapers)
JEL-codes: C12 C14 C41 (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/3937/1/MPRA_paper_3937.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:3937
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().