EconPapers    
Economics at your fingertips  
 

Determinacy of equilibria of smooth infinite economies

Enrique Covarrubias

MPRA Paper from University Library of Munich, Germany

Abstract: This paper deals with generic determinacy of equilibria for infinite dimensional consumption spaces. Our work could be seen as an infinite-dimensional analogue of Dierker and Dierker (1972), by characterising equilibria of an economy as a zero of the aggregate excess demand, and studying its transversality. In this case, we can use extensions of the transversality density theorem. Assuming separable utilities, we give a new proof of generic determinacy of equilibria. We define regular price systems in this setting and show that an economy is regular if and only if its associated excess demand function only has regular equilibrium prices. We also define the infinite equilibrium manifold and show that it has the structure of a Banach manifold.

Keywords: Determinacy; equilibria; infinite economies; Fredholm maps; equilibrium manifold; Banach manifolds (search for similar items in EconPapers)
JEL-codes: D50 D51 (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://mpra.ub.uni-muenchen.de/9437/1/MPRA_paper_9437.pdf original version (application/pdf)

Related works:
Journal Article: Regular Infinite Economies (2010) Downloads
Working Paper: Regular Infinite Economies (2007) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:9437

Access Statistics for this paper

More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().

 
Page updated 2025-03-19
Handle: RePEc:pra:mprapa:9437