Optimization of Time-Varying Electricity Rates
Jacob Mays and
Diego Klabjan
The Energy Journal, 2017, vol. 38, issue 5, 67-92
Abstract:
Current consensus holds that 1) passing through wholesale electricity clearing prices to end-use consumers will produce maximal efficiency gains and 2) simpler forms of time-varying retail rates will capture only a small portion of potential benefits. We show that neither holds in the presence of capacity costs typical in U.S. wholesale markets. Using an optimization model describing the short-term problem faced by an electricity retailer, we find hourly prices that optimally pass through capacity costs. We estimate benefits for a retailer using these prices as well as optimal configurations of a number of time-varying rate structures. Testing a range of realistic assumptions, we find that in the absence of a well-designed demand charge, passing through clearing prices may miss up to three quarters of the benefits possible from optimal hourly prices. By contrast, a simpler critical peak pricing structure enables retailers to achieve approximately two-thirds of the total possible benefits.
Keywords: Rate design; time-of-use rates; critical peak pricing; real-time pricing (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.sagepub.com/doi/10.5547/01956574.38.5.jmay (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:enejou:v:38:y:2017:i:5:p:67-92
DOI: 10.5547/01956574.38.5.jmay
Access Statistics for this article
More articles in The Energy Journal
Bibliographic data for series maintained by SAGE Publications ().