EconPapers    
Economics at your fingertips  
 

Remuneration of Flexibility using Operating Reserve Demand Curves: A Case Study of Belgium

Anthony Papavasiliou and Yves Smeers

The Energy Journal, 2017, vol. 38, issue 6, 105-135

Abstract: ABSTRACT Flexibility is becoming an increasingly important attribute of conventional generators due to the challenges imposed by the unpredictable, highly variable and non-controllable nature of renewable supply. Paradoxically, flexible units are currently being mothballed or retired in Europe due to financial losses. Weinvestigate an energy-only market design, referred to as operating reserve demand curves, that rewards flexibility by adjusting the real-time energy price to a level that reflects the value of capacity under conditions of scarcity. We test the performance of the mechanism by developing a model of the Belgian electricity market, which is validated against the historical outcomes of the market over a study period of 21 months. We verify that (i) based on the observed market outcomes of our study period, none of the existing combined cycle gas turbines of the Belgian market can cover their investment costs, and (ii) the introduction of price adders that reflect the true value of scarce flexible capacity restores economic viability for most combined cycle gas turbines in the Belgian market.

Keywords: Flexibility; Energy-only markets; Renewable integration; Operating; reserves; Capacity remuneration (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.5547/01956574.38.6.apap (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:enejou:v:38:y:2017:i:6:p:105-135

DOI: 10.5547/01956574.38.6.apap

Access Statistics for this article

More articles in The Energy Journal
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:enejou:v:38:y:2017:i:6:p:105-135