EconPapers    
Economics at your fingertips  
 

Statistical Arbitrage and Information Flow in an Electricity Balancing Market

Derek W. Bunn and Stefan O.E. Kermer

The Energy Journal, 2021, vol. 42, issue 5, 19-40

Abstract: Motivated by the events following a natural experiment in 2015, when the market rules for electricity spot trading were changed in Britain, we analyse the operational effects of market participants responding to price incentives for spillage and shortage positions in a single price, real-time market. We develop an analytical model for optimal real-time decisions by generators and speculators based upon forecasts of the conditional distribution of the total system imbalance between instantaneous supply and demand. From this, we examine the effects of time delays in information transparency for the consequent statistical arbitrage positions. We backtested this model empirically to the Austrian system imbalance settlements process within the German/Austrian integrated market. Results suggest that permitting additional intraday flexibility from a physical generator or a non-physical trader can be beneficial for the agents themselves, the system operator and market efficiency.

Keywords: Electricity; Real-time Markets; Trading; Forecasting; Statistical Arbitrage (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.sagepub.com/doi/10.5547/01956574.42.5.dbun (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:enejou:v:42:y:2021:i:5:p:19-40

DOI: 10.5547/01956574.42.5.dbun

Access Statistics for this article

More articles in The Energy Journal
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:enejou:v:42:y:2021:i:5:p:19-40