Modification of the mandatory generation region of producers in the reactive power market by considering reactive power losses
A Ahmadimanesh and
M Kalantar
Energy & Environment, 2017, vol. 28, issue 7, 744-762
Abstract:
In this paper, a new reactive power market structure is studied and presented. Active power flow by itself causes active and reactive losses. Considering such losses in the reactive power market without paying any costs is the main purpose of this paper. So, this study tries to improve reactive power market and create fair competition in reactive power generation through improving the market structure. For this aim, firstly a new allocation method for reactive power losses is presented, and contribution of each producer in reactive losses is calculated. In the next step, this share of losses is used for modification of the mandatory generation region of units and the new structure of reactive power market is proposed. Also, in this work, the cost payment function of synchronous generators is modified. In order to simulate and describe the proposed methods in the implementation of the reactive power market, IEEE 24 bus reliability test system is applied and the proposed methods are compared with each other and the conventional reactive power market structure. As will be shown, the total payment by ISO will be reduced by using the proposed methods.
Keywords: Deregulation; power market; ancillary services; reactive power; power losses (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0958305X17724775 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:engenv:v:28:y:2017:i:7:p:744-762
DOI: 10.1177/0958305X17724775
Access Statistics for this article
More articles in Energy & Environment
Bibliographic data for series maintained by SAGE Publications ().