EconPapers    
Economics at your fingertips  
 

A Cellular Automata Model Based on Nonlinear Kernel Principal Component Analysis for Urban Growth Simulation

Yongjiu Feng and Yan Liu
Additional contact information
Yongjiu Feng: College of Marine Sciences, Shanghai Ocean University, China
Yan Liu: School of Geography, Planning and Environmental Management, The University of Queensland, Australia

Environment and Planning B, 2013, vol. 40, issue 1, 117-134

Abstract: In this paper we present a cellular automata (CA) model based on nonlinear kernel principal component analysis (KPCA) to simulate the spatiotemporal process of urban growth. As a generalisation of the linear principal component analysis (PCA) method, the KPCA method was developed to extract the nonspatially correlated principal components amongst the various spatial variables which affect urban growth in high-dimensional feature space. Compared with the linear PCA method, the KPCA approach is superior as it generates fewer independent components while still maintaining its capacity to reduce the noise level of the original input datasets. The reduced number of independent components can be used to better reconstruct the nonlinear transition rules of a CA model. In addition, the principal components extracted through the KPCA approach are not linearly related to the input spatial variables, which accords well with the nonlinear nature of complex urban systems. The KPCA-based CA model (KPCA-CA) developed was fitted to a fast-growing region in China's Shanghai Metropolis for the sixteen-year period 1992–2008. The simulated patterns of urban growth matched well with the observed urban growth, as determined from historical remotely sensed images for the same period. The KPCA-CA model resulted in significant improvements in locational accuracy when compared with conventional CA models and acted to reduce simulation uncertainty.

Keywords: cellular automata; kernel principal component analysis; transition rules; urban growth simulation; GIS (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1068/b37142 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:envirb:v:40:y:2013:i:1:p:117-134

DOI: 10.1068/b37142

Access Statistics for this article

More articles in Environment and Planning B
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:envirb:v:40:y:2013:i:1:p:117-134