Non-path dependent urban growth potential mapping using a data-driven evidential belief function
Reza Arasteh,
Rahim Ali Abbaspour and
Abdolrassoul Salmanmahiny
Additional contact information
Reza Arasteh: University of Tehran, Iran
Rahim Ali Abbaspour: School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Iran
Environment and Planning B, 2021, vol. 48, issue 3, 555-573
Abstract:
Improper urbanization and its environmental impacts have imposed many problems to humanity. Recently, numerous studies have been conducted using different methods to understand and manage spatial and temporal changes in urbanization. In this study, the capability of the data-driven evidential belief function model as a non-path dependent urban growth potential mapping method was evaluated. Using this approach, the conventional trend-based urban growth prediction procedure is transformed into a data integration task through which the potential locations for urban sprawl in response to multiple environmental and anthropogenic variables could be determined. Therefore, true knowledge about urban growth conditioning factors and their quantitative relationships with built-up areas can be obtained. The multivariate-based logistic regression model as a well-known urban growth modelling method was employed to check the efficiency and validity of the proposed evidential belief function model. Furthermore, a hybrid approach based on the logistic regression model results coupled with the data-driven evidential belief function model was developed. The validation results using the relative operating characteristic method indicated that the evidential belief function, logistic regression, and the hybrid methods’ accuracy were 91.81, 84.72, and 92.34%, respectively. Therefore, it can be concluded that while the proposed evidential belief function and hybrid methods for non-path dependent urban growth potential mapping yielded approximately equal results, both of them outperformed the logistic regression model which is an indication of their reliability and accuracy. The proposed evidential belief function and hybrid methods are best suited for integration in different environmental and socio-economic scenarios enhancing the models for urban allocation tasks. In this way, local communities and policy-makers can make smarter decisions.
Keywords: Urban planning; land use; urban growth potential; non-path dependent; Iran (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/2399808319880219 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:envirb:v:48:y:2021:i:3:p:555-573
DOI: 10.1177/2399808319880219
Access Statistics for this article
More articles in Environment and Planning B
Bibliographic data for series maintained by SAGE Publications ().