EconPapers    
Economics at your fingertips  
 

Prediction of residential and non-residential building usage in Germany based on a novel nationwide reference data set

André Hartmann, Martin Behnisch, Robert Hecht and Gotthard Meinel

Environment and Planning B, 2024, vol. 51, issue 1, 216-233

Abstract: Building usage is an important variable in modelling the energetic, material and social properties of a building stock. Gathering this data on large geographical scale, and in the necessary temporal and spatial resolution, that means, on building level, is a challenging task. Machine Learning algorithms like Random Forest have proven useful in predicting building-related features in the past but often resort to training sets of limited geographic scope, for example, cities. This study presents a workflow of predicting the semantic attribute of usage on the level of individual buildings. Based on screening data of the previous ENOB:dataNWG project, a novel building ground-truth data set distributed across Germany, a Random Forest algorithm is used to assess how the German building stock can be classified according to its residential or non-residential use. Different sampling strategies had been applied in order to find a robust evaluation metric for the classifier. Furthermore, the relevance of the feature set is highlighted and it is examined whether regional differences in classification quality exist. Results show that a classification of residential and non-residential building footprints has good prospects with an AUC of up to 0.9.

Keywords: building stock; building usage; classification; machine learning; Random Forest classifier; feature importance; spatial cross-validation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/23998083231175680 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:envirb:v:51:y:2024:i:1:p:216-233

DOI: 10.1177/23998083231175680

Access Statistics for this article

More articles in Environment and Planning B
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:envirb:v:51:y:2024:i:1:p:216-233