Application of Hybrid Approach in Banking System: An Undesirable Operational Performance Modelling
Preeti and
Supriyo Roy
Global Business Review, 2025, vol. 26, issue 3, 684-706
Abstract:
Non-performing loans (NPLs) is a critical constituent that impacts the operational performance of banks. Rising level of risk leads to poor operational performance, especially when it is beyond the bank’s capabilities to control the increasing bad assets. This calls for real-time performance assessment coupled with futuristic decision making to support banking managers. This observation motivates the authors of this article to develop a two-stage performance prediction assessment model. Accordingly, a hybrid approach combining data envelopment analysis (DEA) and artificial neural network (ANN) is developed to measure and predict the operational efficiency scores of banks. DEA effectively explores the operational performance as well as improvable areas of inefficient banks. The training of ANN model is dependent on estimated operational DEA efficiency scores with the objective to estimate the efficiency scores. Domain for the validation of this study includes dataset derived from Indian banks. The validation result shows that trained ANN model has the prediction capacity with minimum error and maximum accuracy. Finally, the outcome of this study is significantly directed towards business managers who can rely on predictions based on empirical findings of this proposed hybrid modelling.
Keywords: Operational performance. Indian banks; data envelopment analysis; artificial neural network; hybrid modelling (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/09721509211026789 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:globus:v:26:y:2025:i:3:p:684-706
DOI: 10.1177/09721509211026789
Access Statistics for this article
More articles in Global Business Review from International Management Institute
Bibliographic data for series maintained by SAGE Publications ().