Cyber security based on mean field game model of the defender: Attacker strategies
Li Miao and
Shuai Li
International Journal of Distributed Sensor Networks, 2017, vol. 13, issue 10, 1550147717737908
Abstract:
The transmission process of information among computers of network is considered as the procedure of interactive behaviors. In this article, we present a mean field game model for the binary interactive behaviors between the malicious attackers and the defenders. We first discuss the evolution of the states of the malicious attackers and the defenders using the susceptiable-infective-Removal epidemic model in which we take into account the stochastic process of the propagation of the infected computers and the attack intensity. Then, we formulate the mean field game consistency stability problem generated by a Hamilton–Jacobi–Bellman equation of the individual player and the fixed-point problem. Finally, we derive the optimal individual strategy with an appropriate assumption that the response time of the defense system is faster than the infection rate.
Keywords: Cyber security; mean field games; approximation transformation; stable equilibrium; optimal strategy (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147717737908 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:13:y:2017:i:10:p:1550147717737908
DOI: 10.1177/1550147717737908
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().