Hybrid traffic prediction scheme for intelligent transportation systems based on historical and real-time data
Jiaming Xie and
Yi-King Choi
International Journal of Distributed Sensor Networks, 2017, vol. 13, issue 11, 1550147717745009
Abstract:
Traffic prediction in smart cities is an essential way for intelligent transportation system. The objective of this article is designing and implementing a traffic prediction scheme which can forecast the traffic flow with high efficiency and accuracy in Hong Kong. One problem in traffic prediction is how to balance the importance of historical traffic data and real-time traffic data. To make use of the real-time data as well as the history records, our ideas are combining data-driven approaches with model-driven approaches. First, the limitations of two baseline approaches auto-regressive integrated moving average and periodical moving average model are discussed. Second, artificial neural network is applied in the hybrid prediction model to balance between the two models. The training of neural network enables the artificial neural network to weight between real-time traffic data and traffic patterns revealed by historical traffic data. Furthermore, an emergency strategy using the Bayesian network is added to the prediction scheme to handle with the traffic accident or other emergent situation. The emergency prediction strategy on unexpected traffic situation considers the traffic condition of nearby links to predict the speed change on the link. Finally, experimental results of short-term and long-term predictions demonstrate the efficiency and accuracy of the proposed scheme.
Keywords: Traffic prediction; neural network; Bayesian network; hybrid model; real-time data; historical data (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147717745009 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:13:y:2017:i:11:p:1550147717745009
DOI: 10.1177/1550147717745009
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().