EconPapers    
Economics at your fingertips  
 

Fingerprint-based Wi-Fi indoor localization using map and inertial sensors

Xingwang Wang, Xiaohui Wei, Yuanyuan Liu, Kun Yang and Xuan Du

International Journal of Distributed Sensor Networks, 2017, vol. 13, issue 12, 1550147717749817

Abstract: It is a common understanding that the localization accuracy can be improved by indoor maps and inertial sensors. However, there is a lack of concrete and generic solutions that combine these two features together and practically demonstrate its validity. This article aims to provide such a solution based on the mainstream fingerprint-based indoor localization approach. First, we introduce the theorem called reference points placement , which gives a theoretical guide to place reference points. Second, we design a Wi-Fi signal propagation-based cluster algorithm to reduce the amount of computation. The paper gives a parameter called reliability to overcome the skewing of inertial sensors. Then we also present Kalman filter and Markov chain to predict the system status. The system is able to provide high-accuracy real-time tracking by integrating indoor map and inertial sensors with Wi-Fi signal strength. Finally, the proposed work is evaluated and compared with the previous Wi-Fi indoor localization systems. In addition, the effect of inertial sensors’ reliability is also discussed. Results are drawn from a campus office building which is about 80 m×140 m with 57 access points.

Keywords: Indoor localization; inertial sensors; map information (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147717749817 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:13:y:2017:i:12:p:1550147717749817

DOI: 10.1177/1550147717749817

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:13:y:2017:i:12:p:1550147717749817