EconPapers    
Economics at your fingertips  
 

Energy-efficient and reliable routing protocol for dynamic-property-based clustering mobile ad hoc networks

Young-jun Oh and Kang-whan Lee

International Journal of Distributed Sensor Networks, 2017, vol. 13, issue 1, 1550147716683604

Abstract: Mobile ad hoc networks comprise mobile nodes. The nodes both send and receive messages and can communicate with each other. Thus, the network builds its own network structure that is not dependent on the infrastructure. Owing to the characteristics of mobile ad hoc networks, they have been used in environments of poor communication, such as those in which the infrastructure cannot be built; for example, disaster areas and war zones. In this article, we propose an advanced energy-conserving optimal path schedule algorithm. The proposed algorithm sets the routing path using the relative angle, which is the distance between the source node and the base station. Using simulation results, we compared the proposed algorithm to existing algorithms. The protocol used by the proposed algorithm provides a higher packet delivery ratio and lower energy consumption than the lowest ID clustering algorithm and the mobility-based metric for clustering in the mobile ad hoc network algorithm.

Keywords: Mobile ad hoc networks; clustering; routing protocol; energy efficient (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147716683604 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:13:y:2017:i:1:p:1550147716683604

DOI: 10.1177/1550147716683604

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:13:y:2017:i:1:p:1550147716683604