EconPapers    
Economics at your fingertips  
 

Combination linear lines of position and neural network for mobile station location estimation

Chien-Sheng Chen

International Journal of Distributed Sensor Networks, 2017, vol. 13, issue 7, 1550147717717387

Abstract: To enhance the effectiveness and accuracy of mobile station location estimation, author utilizes time of arrival measurements from three base stations and one angle of arrival information at the serving base station to locate mobile station in non-line-of-sight environments. This article makes use of linear lines of position, rather than circular lines of position, to give location estimation of the mobile station. It is much easier to solve two linear line equations rather than nonlinear circular ones. Artificial neural networks are widely used techniques in various areas due to overcoming the problem of exclusive and nonlinear relationships. The proposed algorithms employ the intersections of three linear lines of position and one angle of arrival line, based on Levenburg–Marquardt algorithm, to determine the mobile station location without requiring a priori information about the non-line-of-sight error. The simulation results show that the proposed algorithms can always provide much better location estimation than Taylor series algorithm, hybrid lines of position algorithm as well as the geometrical positioning methods for different levels of biased, unbiased, and distance-dependent non-line-of-sight errors.

Keywords: Time of arrival; angle of arrival; non-line-of-sight; Levenburg–Marquardt algorithm (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147717717387 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:13:y:2017:i:7:p:1550147717717387

DOI: 10.1177/1550147717717387

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:13:y:2017:i:7:p:1550147717717387