EconPapers    
Economics at your fingertips  
 

The integration of compressive sensing and clustering for date gathering in unmanned aircraft system–aided networks

Xiangmao Chang, Quan Wang, Zhiguo Qu and Yanchao Zhao

International Journal of Distributed Sensor Networks, 2017, vol. 13, issue 8, 1550147717727713

Abstract: The development of the unmanned aircraft systems is envisioned to greatly reduce the energy consumption of sensor nodes in data gathering process using unmanned aircraft systems as mobile sinks. In traditional sensor networks, compressive sensing and clustering are two key energy-efficient techniques for data gathering. However, how to integrate two techniques into the data gathering for unmanned aircraft system–aided wireless sensor networks effectively is still an open problem. Moreover, most clustering schemes focus on the cluster head selection strategy and simplified the problem of cluster member selection, and most compressive sensing schemes are not integrated with the clustering strategy. To this end, this article studies the problem of integrating compressive sensing with clustering for data gathering in unmanned aircraft system–aided networks. We first give a theoretical formulation of this problem. Considering the non-deterministic polynomial-time hard complexity of the problem, we present two algorithms by jointly considering the compressive ratio variation factor and the distance factor to find near-optimal solutions heuristically. Evaluations based on real data traces show that the proposed algorithms greatly reduced the energy consumption of sensor nodes efficiency.

Keywords: Unmanned aircraft system–aided networks; compressive sensing; clustering; data gathering (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147717727713 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:13:y:2017:i:8:p:1550147717727713

DOI: 10.1177/1550147717727713

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:13:y:2017:i:8:p:1550147717727713