EconPapers    
Economics at your fingertips  
 

Enabling real-time road anomaly detection via mobile edge computing

Zengwei Zheng, Mingxuan Zhou, Yuanyi Chen, Meimei Huo and Dan Chen

International Journal of Distributed Sensor Networks, 2019, vol. 15, issue 11, 1550147719891319

Abstract: To discover road anomalies, a large number of detection methods have been proposed. Most of them apply classification techniques by extracting time and frequency features from the acceleration data. Existing methods are time-consuming since these methods perform on the whole datasets. In addition, few of them pay attention to the similarity of the data itself when vehicle passes over the road anomalies. In this article, we propose QF-COTE, a real-time road anomaly detection system via mobile edge computing. Specifically, QF-COTE consists of two phases: (1) Quick filter. This phase is designed to roughly extract road anomaly segments by applying random forest filter and can be performed on the edge node. (2) Road anomaly detection. In this phase, we utilize collective of transformation-based ensembles to detect road anomalies and can be performed on the cloud node. We show that our method performs clearly beyond some existing methods in both detection performance and running time. To support this conclusion, experiments are conducted based on two real-world data sets and the results are statistically analyzed. We also conduct two experiments to explore the influence of velocity and sample rate. We expect to lay the first step to some new thoughts to the field of real-time road anomalies detection in subsequent work.

Keywords: Acceleration data; road anomaly detection; cloud computing; edge computing (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147719891319 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:15:y:2019:i:11:p:1550147719891319

DOI: 10.1177/1550147719891319

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:15:y:2019:i:11:p:1550147719891319