E2-MACH: Energy efficient multi-attribute based clustering scheme for energy harvesting wireless sensor networks
Inam Ul Haq,
Qaisar Javaid,
Zahid Ullah,
Zafar Zaheer,
Mohsin Raza,
Muhammad Khalid,
Ghufran Ahmed and
Saleem Khan
International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 10, 1550147720968047
Abstract:
Internet of things have emerged enough due to its applications in a wide range of fields such as governance, industry, healthcare, and smart environments (home, smart, cities, and so on). Internet of things–based networks connect smart devices ubiquitously. In such scenario, the role of wireless sensor networks becomes vital in order to enhance the ubiquity of the Internet of things devices with lower cost and easy deployment. The sensor nodes are limited in terms of energy storage, processing, and data storage capabilities, while their radio frequencies are very sensitive to noise and interference. These factors consequently threaten the energy consumption, lifetime, and throughput of network. One way to cope with energy consumption issue is energy harvesting techniques used in wireless sensor network–based Internet of things. However, some recent studies addressed the problems of clustering and routing in energy harvesting wireless sensor networks which either concentrate on energy efficiency or quality of service. There is a need of an adequate approach that can perform efficiently in terms of energy utilization as well as to ensure the quality of service. In this article, a novel protocol named energy-efficient multi-attribute-based clustering scheme (E 2 -MACH) is proposed which addresses the energy efficiency and communication reliability. It uses selection criteria of reliable cluster head based on a weighted function defined by multiple attributes such as link statistics, neighborhood density, current residual energy, and the rate of energy harvesting of nodes. The consideration of such parameters in cluster head selection helps to preserve the node’s energy and reduce its consumption by sending data over links possessing better signal-to-noise ratio and hence ensure minimum packet loss. The minimized packet loss ratio contributes toward enhanced network throughput, energy consumption, and lifetime with better service availability for Internet of things applications. A set of experiments using network simulator 2 revealed that our proposed approach outperforms the state-of-the-art low-energy adaptive clustering hierarchy and other recent protocols in terms of first-node death, overall energy consumption, and network throughput.
Keywords: Internet of things; wireless sensor network; cluster head selection; energy harvesting; link statistics; signal-to-noise ratio (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147720968047 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:10:p:1550147720968047
DOI: 10.1177/1550147720968047
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().