Mahalanobis distance–based kernel supervised machine learning in spectral dimensionality reduction for hyperspectral imaging remote sensing
Jing Liu and
Yulong Qiao
International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 11, 1550147720968467
Abstract:
Spectral dimensionality reduction is a crucial step for hyperspectral image classification in practical applications. Dimensionality reduction has a strong influence on image classification performance with the problems of strong coupling features and high band correlation. To solve these issues, we propose the Mahalanobis distance–based kernel supervised machine learning framework for spectral dimensionality reduction. With Mahalanobis distance matrix–based dimensional reduction, the coupling relationship between features and the elimination of the scale effect are removed in low-dimensional feature space, which benefits the image classification. The experimental results show that compared with other methods, the proposed algorithm demonstrates the best accuracy and efficiency. The Mahalanobis distance–based multiples kernel learning achieves higher classification accuracy than the Euclidean distance kernel function. Accordingly, the proposed Mahalanobis distance–based kernel supervised machine learning method performs well with respect to the spectral dimensionality reduction in hyperspectral imaging remote sensing.
Keywords: Hyperspectral sensing; dimensionality reduction; kernel learning; metric learning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147720968467 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:11:p:1550147720968467
DOI: 10.1177/1550147720968467
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().