In-vehicle localization based on multi-channel Bluetooth Low Energy received signal strength indicator
Gao Yuan,
Zhao Ze,
Huang Changcheng,
Han Chuanqi and
Cui Li
International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 1, 1550147719900093
Abstract:
High-precision in-vehicle localization is the basis for both in-vehicle location-based service and the analysis of the driver or passengers’ behaviors. However, interferences like effects of multipath and reflection of the signals significantly raise great challenges to the positioning accuracy at in-vehicle environment. This article presents a novel high-precision in-vehicle localization method, namely, the LOC-in-a-Car, based on functional exploration and full use of multi-channel received signal strength indicator of Bluetooth Low Energy. To achieve higher positioning precision, a hierarchical computation algorithm based on Adaboost and support vector machine is proposed in our method. In particular, we also proposed a device calibration method to deal with the heterogeneity of different smartphone terminals. We developed an Android app as a component in which the channel time-sharing acquisition method is fulfilled, enabling smartphones to distinguish data from multi-channels. The system performance is verified via intensive experiments, of which the results show that our method can distinguish the locations of driver or passengers with an accuracy ranging from 86.80% to 92.02% for each seat on Nexus phone, and the overall accuracy is 89.86%, with standard deviation of 2.64%. On Huawei phone, the accuracy ranges from 85.43% to 93.33% with overall accuracy of 89.75% and standard deviation of 3.07%. Both outperform the existing methods.
Keywords: In-vehicle localization; Bluetooth Low Energy; received signal strength indicator; multi-channel; Adaboost; support vector machine; device calibration (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147719900093 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:1:p:1550147719900093
DOI: 10.1177/1550147719900093
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().