EconPapers    
Economics at your fingertips  
 

Depth-based human activity recognition via multi-level fused features and fast broad learning system

Huang Yao, Mengting Yang, Tiantian Chen, Yantao Wei and Yu Zhang

International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 2, 1550147720907830

Abstract: Human activity recognition using depth videos remains a challenging problem while in some applications the available training samples is limited. In this article, we propose a new method for human activity recognition by crafting an integrated descriptor called multi-level fused features for depth sequences and devising a fast broad learning system based on matrix decomposition for classification. First, the surface normals are computed from original depth maps; the histogram of the surface normal orientations is obtained as a low-level feature by accumulating the contributions from normals, then a high-level feature is acquired by sparse coding and pooling on the aggregation of polynormals. After that, the principal component analysis is applied to the conjunction of the two-level features in order to obtain a low-dimensional and discriminative fused feature. At last, fast broad learning system based on matrix decomposition is proposed to accelerate the training process and enhance the classification results. The recognition results on three benchmark data sets show that our method outperforms the state-of-the-art methods in term of accuracy, especially when the number of training samples is small.

Keywords: Human activity recognition; broad learning system; multi-level fused features; principal component analysis (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147720907830 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:2:p:1550147720907830

DOI: 10.1177/1550147720907830

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:16:y:2020:i:2:p:1550147720907830