EconPapers    
Economics at your fingertips  
 

Radio environment map construction by adaptive ordinary Kriging algorithm based on affinity propagation clustering

Haiyang Xia, Song Zha, Jijun Huang and Jibin Liu

International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 5, 1550147720922484

Abstract: In the era of 5G mobile communication, radio environment maps are increasingly viewed as a powerful weapon for the optimization of spectrum resources, especially in the field of autonomous vehicles. However, due to the constraint of limited resources when it comes to sensor networks, it is crucial to select a suitable scale of sensor measurements for radio environment map construction. This article proposes an adaptive ordinary Kriging algorithm based on affinity propagation clustering as a novel spatial interpolation method for the construction of the radio environment map, which can provide precise awareness of signal strength at locations where no measurements are available. Initially, a semivariogram is obtained from all the sensor measurements. Then, in order to select the minimum scale of measurements and at the same time guarantee accuracy, the affinity propagation clustering is introduced in the selection of sensors. Moreover, the sensor estimation groups are created based on the clustering result, and estimation results are obtained by ordinary Kriging. In the end, the simulation of the proposed algorithm is analyzed through comparisons with three conventional algorithms: inverse distance weighting, nearest neighbor, and ordinary Kriging. As a result, the conclusion can be drawn that the proposed algorithm is superior to others in accuracy as well as in efficiency.

Keywords: Radio environment map; autonomous vehicles; semivariogram; affinity propagation clustering; ordinary Kriging (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147720922484 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:5:p:1550147720922484

DOI: 10.1177/1550147720922484

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:16:y:2020:i:5:p:1550147720922484