A video steganalysis method based on coding cost variation
Jianyi Liu,
Cong Zhang,
Ru Zhang,
Yi Li and
Jie Cheng
International Journal of Distributed Sensor Networks, 2021, vol. 17, issue 2, 1550147721992730
Abstract:
Aiming at the problems existing in existing steganalysis algorithms, this article proposes Motion Vector Coding Cost Change video steganalysis features based on Improved Motion Vector Reversion-Based features and Subtractive Probability of Coding Cost Optimal Matching features based on Subtractive Probability of Optimal Matching features from the perspective of the change of coding cost. Motion Vector Coding Cost Change features can be well consistent with the coding cost before recoding by analyzing the sub-pixel coding cost of recoding. By counting the sub-pixel coding costs of motion vectors before and after video recoding, the Sum of Absolute Difference values of motion vectors instead of predicted residuals are applied to steganalysis and detection, and the steganographic algorithm based on motion vectors is effectively detected. Experiments show that Motion Vector Coding Cost Change features have higher detection accuracy than Add-or-Subtract-One, Improved Motion Vector Reversion-Based, and other typical features in various steganography methods, and Subtractive Probability of Coding Cost Optimal Matching features have higher detection effect and better robustness than Subtractive Probability of Optimal Matching features.
Keywords: Video steganalysis; motion vector; sub-pixel coding cost; recoding; Subtractive Probability of Coding Cost Optimal Matching (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147721992730 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:17:y:2021:i:2:p:1550147721992730
DOI: 10.1177/1550147721992730
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().