EconPapers    
Economics at your fingertips  
 

A Bayesian network to evaluate underground rails maintenance strategies in an automation context

Laurent Bouillaut, Olivier Francois and Stéphane Dubois

Journal of Risk and Reliability, 2013, vol. 227, issue 4, 411-424

Abstract: Reliability analysis has become an integral part of system design and operation. This is especially true for systems performing critical tasks, such as mass transportation systems. This explains the numerous advances in the field of reliability modeling. More recently, some studies involving the use of Bayesian networks have been proven relevant to represent complex systems and perform reliability studies. In previous works, a generic methodology was introduced for developing a decision support tool to evaluate complex systems maintenance strategies. This article deals with development of such a decision tool dedicated to the maintenance of Paris metro rails. Indeed, owing to fulfillment of high-performance levels of safety and availability (the latter being especially critical at peak hours), operators need to estimate, hour by hour their ability to prevent or to detect broken rails. To address this problem, a decision support tool was developed, the aim of this article is to evaluate, compare and optimize various operating and maintenance strategies.

Keywords: Maintenance; railway infrastructure; steel wheel metro’s automation; availability; optimization; decision support; probabilistic graphical models (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X13481306 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:227:y:2013:i:4:p:411-424

DOI: 10.1177/1748006X13481306

Access Statistics for this article

More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:risrel:v:227:y:2013:i:4:p:411-424