Application of self-attention conditional deep convolutional generative adversarial networks in the fault diagnosis of planetary gearboxes
Jia Luo,
Jingying Huang,
Jiancheng Ma and
Siyuan Liu
Journal of Risk and Reliability, 2024, vol. 238, issue 2, 260-273
Abstract:
The Generative Adversarial Network (GAN) can generate samples similar to the original data to solve the problem of fault sample imbalance in planetary gearbox fault diagnosis. Most of models rely heavily on convolution to model the dependencies across feature vectors of vibration signals. However, the characterization ability of convolution operator is limited by the size of convolution kernel and it cannot capture the long-distance dependence in the original data. In this paper, self-attention is introduced into Conditional Deep Convolutional Generative Adversarial Networks (C-DCGAN). In the model, vibration features are dynamically weighted and merged, so that it can adaptively focus “attention†on different times to solve the problem of sample differences caused by time-varying vibration signals. Finally, the proposed method is verified on the planetary gearbox experiment and the quality of the generated signal samples is evaluated with Dynamic Time Warping (DTW) algorithm. The visual experimental results indicated that the proposed model performed better than conditional deep convolutional generative adversarial networks (C-DCGAN) and could accurately diagnose various working states of planetary gearboxes.
Keywords: Self-attention mechanism; generative adversarial networks; planetary gearboxes; fault diagnosis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X221147784 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:238:y:2024:i:2:p:260-273
DOI: 10.1177/1748006X221147784
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().