EconPapers    
Economics at your fingertips  
 

Application of self-attention conditional deep convolutional generative adversarial networks in the fault diagnosis of planetary gearboxes

Jia Luo, Jingying Huang, Jiancheng Ma and Siyuan Liu

Journal of Risk and Reliability, 2024, vol. 238, issue 2, 260-273

Abstract: The Generative Adversarial Network (GAN) can generate samples similar to the original data to solve the problem of fault sample imbalance in planetary gearbox fault diagnosis. Most of models rely heavily on convolution to model the dependencies across feature vectors of vibration signals. However, the characterization ability of convolution operator is limited by the size of convolution kernel and it cannot capture the long-distance dependence in the original data. In this paper, self-attention is introduced into Conditional Deep Convolutional Generative Adversarial Networks (C-DCGAN). In the model, vibration features are dynamically weighted and merged, so that it can adaptively focus “attention†on different times to solve the problem of sample differences caused by time-varying vibration signals. Finally, the proposed method is verified on the planetary gearbox experiment and the quality of the generated signal samples is evaluated with Dynamic Time Warping (DTW) algorithm. The visual experimental results indicated that the proposed model performed better than conditional deep convolutional generative adversarial networks (C-DCGAN) and could accurately diagnose various working states of planetary gearboxes.

Keywords: Self-attention mechanism; generative adversarial networks; planetary gearboxes; fault diagnosis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X221147784 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:238:y:2024:i:2:p:260-273

DOI: 10.1177/1748006X221147784

Access Statistics for this article

More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:risrel:v:238:y:2024:i:2:p:260-273