An efficient discretization scheme for a dynamic Bayesian network in structural reliability analysis
Hongseok Kim and
Dooyoul Lee
Journal of Risk and Reliability, 2024, vol. 238, issue 4, 728-739
Abstract:
Using a dynamic Bayesian network (DBN) to estimate the failure risk of a component or system that deteriorates with time has several advantages. A DBN discretizes the probability distribution of variables and thereby increases the efficiency of computing resources and reduces computation time. However, it is important to devise an optimal discretization scheme because the size of the model grows exponentially as the number of discretized intervals increases. In this paper, we propose an optimal discretization scheme for a DBN used to model the time-varying deterioration of a turbine blade component. The results of estimating the reliability indices with the DBN were verified by comparing them with the results of a Monte Carlo simulation. In addition, compared with a log-transformed discretization method, our DBN discretization method shows a significantly increased computation speed.
Keywords: Dynamic Bayesian network; discretization; deterioration (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X231182223 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:238:y:2024:i:4:p:728-739
DOI: 10.1177/1748006X231182223
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().