EconPapers    
Economics at your fingertips  
 

RUL management by production reference loopback

Kamrul Islam Shahin, Christophe Simon and Philippe Weber

Journal of Risk and Reliability, 2024, vol. 238, issue 4, 873-888

Abstract: Online remaining useful life (RUL) assessment is a significant asset in prognostic and health management (PHM) in many industrial domains where safety, reliability, and cost reduction are of high importance. It is not easy to predict the breakdown state of a system when it operates under multiple operating conditions, because system degradation varies with the dynamics of the operations. This paper presents an Input-Output Hidden Markov Model (IOHMM) that estimates the RUL in real time based on available measurements. The model learns the impact of the operating condition on the RUL and allows to manage the system RUL by changing the corresponding operating conditions. A reference managing algorithm is presented to match the estimated RUL to a given target RUL. In addition, well-known algorithms are adapted from HMM to IOHMM and are used for model training and health state diagnostics. A numerical application is proposed to show the importance of obtaining good predictions from a limited amount of data sequences. Specifically, since degradation is a slow process, it is difficult to have a large amount of data sequences in order to predict the RUL more accurately until the failure. Therefore, the bootstrap method with data resampling and replacement is used to train the IOHMM model to improve estimation accuracy.

Keywords: System health; PHM; Input Output Hidden Markov Model; degradation design; condition monitoring; RUL management (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X221128363 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:238:y:2024:i:4:p:873-888

DOI: 10.1177/1748006X221128363

Access Statistics for this article

More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:risrel:v:238:y:2024:i:4:p:873-888