EconPapers    
Economics at your fingertips  
 

Prioritisation of operations during emergency shutdown of a crude distillation unit by interval-valued intuitionistic fuzzy analytic hierarchy process

Gopalakrishnan Suresh, Vadakkapaikkadu Ravindran Renjith and Anchalassery Balakrishnan Bhasi

Journal of Risk and Reliability, 2024, vol. 238, issue 5, 1023-1036

Abstract: A very reliable control system for offering a safety layer in emergency scenarios is an emergency shutdown system, or ESD system. It aids in preventing crises from having disastrous effects on the economy, the environment or business operations. In any plant, emergency shutdown systems reduce the risk of harm to the working population, the environment or equipment damage by guarding against leaks, hydrocarbon escapes, fire outbreaks and explosions. The ESD system halts process activity in an emergency, ensures that the hazard is isolated and does not worsen. It is essential that there is a clearly defined emergency procedure in place when a facility needs to be shut down in an emergency. When preparing an emergency procedure for use in an emergency, it is crucial to prioritise the operations. The factory uses an Interval-valued Intuitionistic Fuzzy Analytical Hierarchy Process (IVIFAHP) to prioritise activities in emergency situations. It is possible to design emergency shutdown systems using the aforementioned order of operations. It is possible to properly set up safety measures using the multi-criteria decision-making approach (MCDM). The Analytical Hierarchy Process (AHP) compares variables without taking measurement scales or units into consideration, which is a distinct benefit. The AHP’s handling of ambiguity, uncertainty and imprecise data is improved by the IVIFAHP.

Keywords: Crude distillation unit; plant emergencies; shut down; IVIFAHP; MCDM; safety instrumentation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X231193476 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:238:y:2024:i:5:p:1023-1036

DOI: 10.1177/1748006X231193476

Access Statistics for this article

More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:risrel:v:238:y:2024:i:5:p:1023-1036