A novel fault detection and diagnostic Petri net methodology for dynamic systems
Taofeeq Alabi Badmus,
Rasa Remenyte-Prescott and
Darren Prescott
Journal of Risk and Reliability, 2025, vol. 239, issue 1, 136-161
Abstract:
Faults can have significant, negative impacts on the operation and performance of simple and complex dynamic systems. Based on the integration of Bayesian network diagnostic features with Petri net formalism, the existing Bayesian-supported Petri net tool has demonstrated the flexibility of using the Petri net approach for diagnosing failure scenario of a dynamic system. However, studies on using the proposed hybrid Petri net approach for condition monitoring and early detection and diagnosis of single and multiple failures in a dynamic system with feedback control loops are yet to be investigated. Thus, this paper presents a methodology to address this research gap using the operation of a water tank level control system as a case study. The method combines the constructed Generalised Stochastic Petri Net (GSPN) model of the system operation with its corresponding fault diagnostic Petri net model, created using the proposed modified Bayesian Stochastic Petri Net (mBSPN) formalism. The GSPN model establishes the causal relationships between the system’s components and/or subsystems. It further identifies deviations in the sensor measurements of the observable process variables characterising the system operation. The information provided by the sensors in the system model are then inputted into the mBSPN model to diagnose the root cause of the observed deviations. The obtained results demonstrated the capability of using the proposed integrated Petri net methodology for system condition monitoring, early fault detection and diagnosis of single and multiple failures in a dynamic system with feedback control loops.
Keywords: Petri net; Bayesian network; fault diagnosis; dynamic system; inference algorithm (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1748006X231212539 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:risrel:v:239:y:2025:i:1:p:136-161
DOI: 10.1177/1748006X231212539
Access Statistics for this article
More articles in Journal of Risk and Reliability
Bibliographic data for series maintained by SAGE Publications ().