EconPapers    
Economics at your fingertips  
 

Option-Pricing in Incomplete Markets: The Hedging Portfolio plus a Risk Premium-Based Recursive Approach

Alfredo Ibáñez

No 216, Computing in Economics and Finance 2005 from Society for Computational Economics

Abstract: Consider a non-spanned security C_{T} in an incomplete market. We study the risk/return trade-offs generated if this security is sold for an arbitrage-free price C₀ and then hedged. We consider recursive "one-period optimal" self-financing hedging strategies, a simple but tractable criterion. For continuous trading, diffusion processes, the one-period minimum variance portfolio is optimal. Let C₀(0) be its price. Self-financing implies that the residual risk is equal to the sum of the one-period orthogonal hedging errors, ∑_{t≤T}Y_{t}(0)e^{r(T-t)}. To compensate the residual risk, a risk premium y_{t}Δt is associated with every Y_{t}. Now let C₀(y) be the price of the hedging portfolio, and ∑_{t≤T}(Y_{t}(y)+y_{t}Δt)e^{r(T-t)} is the total residual risk. Although not the same, the one-period hedging errors Y_{t}(0) and Y_{t}(y) are orthogonal to the trading assets, and are perfectly correlated. This implies that the spanned option payoff does not depend on y. Let C₀=C₀(y). A main result follows. Any arbitrage-free price, C₀, is just the price of a hedging portfolio (such as in a complete market), C₀(0), plus a premium, C₀-C₀(0). That is, C₀(0) is the price of the option's payoff which can be spanned, and C₀-C₀(0) is the premium associated with the option's payoff which cannot be spanned (and yields a contingent risk premium of ∑y_{t}Δte^{r(T-t)} at maturity). We study other applications of option-pricing theory as well

Keywords: Option Pricing; Incomplete Markets (search for similar items in EconPapers)
JEL-codes: G13 (search for similar items in EconPapers)
Date: 2005-11-11
New Economics Papers: this item is included in nep-fin and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://repec.org/sce2005/up.4981.1107095602.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sce:scecf5:216

Access Statistics for this paper

More papers in Computing in Economics and Finance 2005 from Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-20
Handle: RePEc:sce:scecf5:216