Обработка цифровых изображений следов на пулях для автоматической идентификации оружия
Федоренко В. А. and
Сидак Е. В.
Additional contact information
Федоренко В. А.: Образовательно-научный институт наноструктури биосистем Саратовского государственного университета
Сидак Е. В.: Образовательно-научный институт наноструктури биосистем Саратовского государственного университета
Izvestiya of Saratov University. New Series. Series: Economics. Management. Law Известия Саратовского университета. Новая серия. Серия Экономика. Управление. Право, 2014, vol. 14, issue 1-2, 200-205
Abstract:
Введение. Идентификация огнестрельного оружия по следам на выстреленных пулях является одной из наиболее сложных задач судебно-баллистической экспертизы. Это вызвано тем, что индивидуальные признаки оружия, отображающиеся в следах на выстреленных пулях, обладают высокой степенью вариативности. Применяемые в настоящее время способы автоматической идентификации огнестрельного оружия оказываются малоэффективными при анализе следов электронных пулетек, содержащих десятки тысяч однотипных объектов. Методы. В работе предлагается алгоритм автоматической оценки схожести вторичных следов на выстреленных пулях, основанный на предварительной обработке изображений, их бинаризации и применении корреляционных методов. Для оценки идентификационной значимости следов используется автокорреляционная функция, а степень совпадения следов определяется по максимуму функции взаимной корреляции. Разработанный алгоритм фактически моделирует операции, которые умозрительно проводит эксперт при сравнении следов. Например, при сравнении следов методом совмещения трассы представляются в виде светлых полос относительно более темного фона независимо от яркости самого изображения. Экспериментальная часть. Работоспособность предлагаемого алгоритма протестирована на наборах пуль, выстреленных из 16 различных экземпляров оружия. Показана эффективность предложенного метода как при анализе парных следов, так и различающихся следов. Обсуждение результатов. Оценка идентификационной значимости следов и определение максимума функции взаимной корреляции цифровых изображений, представленных в бинарном виде, позволяет более корректно формировать приоритетный список по степени схожести сравниваемых изображений. В конечном счете это позволяет повысить эффективность проведения проверок по электронной пулетеке.
Keywords: СЛЕДЫ НА ПУЛЯХ; ИДЕНТИФИКАЦИЯ; СРАВНЕНИЕ ПРИЗНАКОВ; ИНДИВИДУАЛЬНЫЕ ПРИЗНАКИ; АВТОМАТИЧЕСКИЕ БАЛЛИСТИЧЕСКИЕ ИДЕНТИФИКАЦИОННЫЕ СИСТЕМЫ (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
http://cyberleninka.ru/article/n/obrabotka-tsifrov ... ntifikatsii-oruzhiya
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:scn:002275:15772832
Access Statistics for this article
More articles in Izvestiya of Saratov University. New Series. Series: Economics. Management. Law Известия Саратовского университета. Новая серия. Серия Экономика. Управление. Право from CyberLeninka, Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского»
Bibliographic data for series maintained by CyberLeninka ().