EconPapers    
Economics at your fingertips  
 

Анализ возможностей автоматизации выявления недобросовестных микрофинансовых организаций на основе методов машинного обучения // Analysis of Possibilities to Automate Detection of Unscrupulous Microfinance Organizations based on Machine learning Methods

Yu. Beketnova M. and Ю. Бекетнова М.
Additional contact information
Yu. Beketnova M.: Financial University
Ю. Бекетнова М.: Финансовый университет

Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, 2020, vol. 24, issue 6, 38-50

Abstract:

Microfinance is a way to fight poverty, and therefore is of high social significance. The microfinance sector in Russia is progressing. However, the engagement of microfinance organizations in illegal financial transactions associated with fraud, illegal creditors, money laundering, significantly limits their potential and has negative impact on their development. The aim of the paper is to study the possibilities to automate detection of unscrupulous microfinance organizations based on machine learning methods in order to promptly identify and suppress illegal activities by regulatory authorities. The author cites common fraudulent schemes involving microfinance organizations, including a scheme for cashing out maternity capital, a fraudulent lending scheme against real estate. The author carried out a comparative analysis of the results obtained by classification methods — the logistic regression method, decision trees (algorithms of two-class decision forest, Adaboost), support vector machine (algorithm of two-class support vector machine), neural network methods (algorithm of two-class neural network), Bayesian networks (algorithm of two-class Bayes network). The two-class support vector machine provided the most accurate results. The author analysed the data on microfinance institutions published by the Bank of Russia, the MFOs themselves, and banki.ru. The author concludes that the research results can be of further use by the Bank of Russia and Rosfinmonitoring to automate detection of unscrupulous microfinance organizations.

Микрофинансирование является одним из способов борьбы с бедностью, в связи с чем имеет высокую социальную значимость. Сфера микрофинансирования в России активно развивается. Но вовлеченность ми-крофинансовых организаций (МФО) в незаконные финансовые операции, связанные с мошенничеством, деятельностью нелегальных кредиторов, легализацией доходов, полученных преступным путем, существенно ограничивают их потенциал и негативно влияют на динамику развития. Цель исследования состоит в изучении возможностей автоматизации процесса выявления недобросовестных участников рынка микрофинансирования на основе методов и алгоритмов машинного обучения для оперативного выявления и пресечения противоправной деятельности контролирующими органами. Автор приводит распространенные мошеннические схемы с участием микрофинансовых организаций, в том числе схему обналичивания материнского капитала, мошенническую схему кредитования под залог недвижимости. Проведен сравнительный анализ результатов, полученных методами классификации — методом логистической регрессии, деревьев решений (алгоритмы двухклассовый лес решений, Adaboost), методом опорных векторов (алгоритм двухклассовая машина опорных векторов), нейросетевыми методами (алгоритм двухклассовой нейронной сети), Байесовскими сетями (алгоритм двухклассовой сети Байеса). Наиболее точные результаты показала двухклассовая машина опорных векторов. Анализ проведен на основе данных о микрофинансовых организациях, публикуемых Банком России, самими МФО, порталом banki.ru. Автор делает вывод о том, что приведенные результаты исследования могут быть использованы Банком России и Росфинмониторингом для автоматизации выявления недобросовестных микрофинансовых организаций.

Keywords: E58, G21, C53; E58, G21, C53; microfinance organizations; financial monitoring; machine learning methods; classification algorithms; микрофинансовые организации; финансовый мониторинг; методы машинного обучения; алгоритмы классификации (search for similar items in EconPapers)
Date: 2020-12-11
References: Add references at CitEc
Citations:

Downloads: (external link)
https://financetp.fa.ru/jour/article/viewFile/1090/742.pdf (application/pdf)
https://financetp.fa.ru/jour/article/viewFile/1090/743.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:scn:financ:y:2020:i:6:p:38-50

Access Statistics for this article

More articles in Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice from ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation
Bibliographic data for series maintained by Алексей Скалабан ().

 
Page updated 2025-03-20
Handle: RePEc:scn:financ:y:2020:i:6:p:38-50