Local consistency of Markov chain Monte Carlo methods
Kengo Kamatani ()
Annals of the Institute of Statistical Mathematics, 2014, vol. 66, issue 1, 63-74
Abstract:
In this paper, we introduce the notion of efficiency (consistency) and examine some asymptotic properties of Markov chain Monte Carlo methods. We apply these results to the data augmentation (DA) procedure for independent and identically distributed observations. More precisely, we show that if both the sample size and the running time of the DA procedure tend to infinity, the empirical distribution of the DA procedure tends to the posterior distribution. This is a local property of the DA procedure, which may be, in some cases, more helpful than the global properties to describe its behavior. The advantages of using the local properties are the simplicity and the generality of the results. The local properties provide useful insight into the problem of how to construct efficient algorithms. Copyright The Institute of Statistical Mathematics, Tokyo 2014
Keywords: Monte Carlo; Markov chain; Asymptotic normality (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10463-013-0403-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:66:y:2014:i:1:p:63-74
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2
DOI: 10.1007/s10463-013-0403-3
Access Statistics for this article
Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi
More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().