Quantitative robustness of instance ranking problems
Tino Werner ()
Additional contact information
Tino Werner: Institute for Mathematics, Carl von Ossietzky University Oldenburg
Annals of the Institute of Statistical Mathematics, 2023, vol. 75, issue 2, No 7, 335-368
Abstract:
Abstract Instance ranking problems intend to recover the ordering of the instances in a data set with applications in scientific, social and financial contexts. In this work, we concentrate on the global robustness of parametric instance ranking problems in terms of the breakdown point which measures the fraction of samples that need to be perturbed in order to let the estimator take unreasonable values. Existing breakdown point notions do not cover ranking problems so far. We propose to define a breakdown of the estimator as a sign-reversal of all components which causes the predicted ranking to be potentially completely inverted; therefore, we call it the order-inversal breakdown point (OIBDP). We will study the OIBDP, based on a linear model, for several different carefully distinguished ranking problems and provide least favorable outlier configurations, characterizations of the order-inversal breakdown point and sharp asymptotic upper bounds. We also compute empirical OIBDPs.
Keywords: Breakdown point; Quantitative robustness; Instance ranking problems; Sparsity (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10463-022-00847-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:75:y:2023:i:2:d:10.1007_s10463-022-00847-1
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2
DOI: 10.1007/s10463-022-00847-1
Access Statistics for this article
Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi
More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().