EconPapers    
Economics at your fingertips  
 

Uncovering University Application Patterns Through Graph Representation Learning

Hendrik Santoso Sugiarto () and Yozef Tjandra ()
Additional contact information
Hendrik Santoso Sugiarto: Calvin Institute of Technology
Yozef Tjandra: Calvin Institute of Technology

Annals of Data Science, 2025, vol. 12, issue 4, No 9, 1343-1368

Abstract: Abstract In university admissions, interaction networks naturally emerge between prospective students and available majors. Understanding hidden patterns in such a vast network is crucial for decision-making but poses technical challenges due to its complexity and data limitations. Many existing models rely heavily on user profiling, raising privacy concerns and making data collection difficult. Instead, this work extracts meaningful insights using only the adjacency information of the network, avoiding the need for personal data. We leverage Graph Convolutional Networks (GCN) to generate compact representations for major recommendation and clustering tasks. Our GCN-based approach outperforms classical methods such as popularity-based and Non-negative Matrix Factorization (NMF), as well as the neural Generalized Matrix Factorization (GMF) model, achieving up to 61.06% and 12.17% improvements in smaller (dimension 40) and larger (dimension 80) embeddings, respectively. Furthermore, hierarchical clustering on these embeddings reveals implicit patterns in student preferences, particularly regarding fields of study and geographic locations, even without explicit data on these attributes. These findings demonstrate that meaningful insights can be derived from interaction networks while mitigating privacy concerns associated with user profiling.

Keywords: Recommender systems; Graph analysis; Graph convolutional networks; Graph embedding; Representation learning; Clustering (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s40745-025-00611-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:aodasc:v:12:y:2025:i:4:d:10.1007_s40745-025-00611-1

Ordering information: This journal article can be ordered from
https://www.springer ... gement/journal/40745

DOI: 10.1007/s40745-025-00611-1

Access Statistics for this article

Annals of Data Science is currently edited by Yong Shi

More articles in Annals of Data Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-07-17
Handle: RePEc:spr:aodasc:v:12:y:2025:i:4:d:10.1007_s40745-025-00611-1