EconPapers    
Economics at your fingertips  
 

Demand Prediction in the Automobile Industry Independent of Big Data

Takumi Kato ()
Additional contact information
Takumi Kato: Saitama University

Annals of Data Science, 2022, vol. 9, issue 2, No 4, 249-270

Abstract: Abstract In recent years, various kinds of big data have been handled, and many variables are used in prediction model research. However, a gap between research and practice is thought to exist. As a result of adding variables that cannot be obtained at present as data representing the future to the explanatory variable, predicting the explanatory variable to apply it is necessary. There are cases wherein customers’ purchase intentions and attractiveness of products are used as explanatory variables; however, this is also not realistic because it is impossible to obtain product information from other companies before the products are launched. Therefore, to be useful for the production/sales plan, it is important that predictions are done using only currently available data, without additional surveys. In this study, gross domestic product and population are used as future data, models are built to predict the demand by body type in Japan on a monthly basis, up to 36 months ahead. Furthermore, in addition to earthquake and subsidy events, model change features were designed and incorporated into the models. The results showed that the prediction accuracy with an error of approximately 5%. It is believed that this study could suggest the possibility of feature quantity design and modeling instead of relying on large amounts of data.

Keywords: Model change; GDP; Earthquake; Subsidy; State space model (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s40745-020-00278-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:aodasc:v:9:y:2022:i:2:d:10.1007_s40745-020-00278-w

Ordering information: This journal article can be ordered from
https://www.springer ... gement/journal/40745

DOI: 10.1007/s40745-020-00278-w

Access Statistics for this article

Annals of Data Science is currently edited by Yong Shi

More articles in Annals of Data Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:aodasc:v:9:y:2022:i:2:d:10.1007_s40745-020-00278-w