Study of on-line measurement of traffic self-similarity
Liudvikas Kaklauskas and
Leonidas Sakalauskas ()
Central European Journal of Operations Research, 2013, vol. 21, issue 1, 63-84
Abstract:
The research focuses on the analysis of university e-learning network traffic to work out and validate the methods that are most suitable for robust analysis and on-line monitoring of self-similarity. Time series of network traffic analyzed are formed by registering data packets in a node at different regimes of network traffic and different ways of sampling. The results obtained have been processed by Fractan, Selfis programmes and the modules library SSE (Self-similarity Estimator) developed in the paper, which employs the robust analysis methods. The methods implemented in the SSE (Self-similar Estimator) have been tested by computer simulation applying the Janicki and Weron ( 2000 ) algorithm for generating random standard stable values. The research results show that the regression method implemented by the software modules library SSE is most applicable to the network traffic analysis. The investigation of traffic in the Siauliai University e-learning network has been shown that the network traffic is self-similar with the Hurst coefficient that changes in the interval [0.53, 0.70], the correspondent stability index changes in the interval [1.43, 1.89], the skewness not observed because the estimated β = 0. Copyright Springer-Verlag 2013
Keywords: Self-similarity; Hurst coefficient; Long-range dependence; Skewness; α-Stable distribution (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10100-011-0216-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:cejnor:v:21:y:2013:i:1:p:63-84
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10100
DOI: 10.1007/s10100-011-0216-5
Access Statistics for this article
Central European Journal of Operations Research is currently edited by Ulrike Leopold-Wildburger
More articles in Central European Journal of Operations Research from Springer, Slovak Society for Operations Research, Hungarian Operational Research Society, Czech Society for Operations Research, Österr. Gesellschaft für Operations Research (ÖGOR), Slovenian Society Informatika - Section for Operational Research, Croatian Operational Research Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().