EconPapers    
Economics at your fingertips  
 

A novel approach to cutting decision trees

Fadime Üney-Yüksektepe ()

Central European Journal of Operations Research, 2014, vol. 22, issue 3, 553-565

Abstract: In data mining, binary classification has a wide range of applications. Cutting Decision Tree (CDT) induction is an efficient mathematical programming based method that tries to discretize the data set on hand by using multiple separating hyperplanes. A new improvement to CDT model is proposed in this study by incorporating the second goal of maximizing the distance of the correctly classified instances to the misclassification region. Computational results show that developed model achieves better classification accuracy for Wisconsin Breast Cancer database and Japanese Banks data set when compared to existing piecewise-linear models in literature. Furthermore, remarkable results are obtained for the well-known benchmarking data sets (Buba Liver Disorders, Blood Tranfusion and Pima Indian Diabetes) when compared to the original CDT model. Copyright Springer-Verlag Berlin Heidelberg 2014

Keywords: Discriminant analysis; Mathematical programming; Data mining; Decision trees; Piecewise-linear models (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s10100-013-0312-9 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:cejnor:v:22:y:2014:i:3:p:553-565

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10100

DOI: 10.1007/s10100-013-0312-9

Access Statistics for this article

Central European Journal of Operations Research is currently edited by Ulrike Leopold-Wildburger

More articles in Central European Journal of Operations Research from Springer, Slovak Society for Operations Research, Hungarian Operational Research Society, Czech Society for Operations Research, Österr. Gesellschaft für Operations Research (ÖGOR), Slovenian Society Informatika - Section for Operational Research, Croatian Operational Research Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:cejnor:v:22:y:2014:i:3:p:553-565