Effects of OCRA parameters and learning rate on machine scheduling
Ercan Şenyiğit (),
Uğur Atici () and
Mehmet Burak Şenol ()
Additional contact information
Ercan Şenyiğit: Erciyes Universitesi
Uğur Atici: Sivas Cumhuriyet Universitesi
Mehmet Burak Şenol: Gazi Universitesi
Central European Journal of Operations Research, 2022, vol. 30, issue 3, No 5, 959 pages
Abstract:
Abstract In this paper, the effects of Occupational Repetitive Actions (OCRA) parameters, learning rate on process times, and machine scheduling were investigated. We propose that Work-Related Musculoskeletal Disorder (WMSD) risks should be taken into account in machine scheduling. To the best of our knowledge, none of the earlier methods simultaneously considered effects of WMSD risks and the learning rate on processing times. The OCRA index method was employed for WMSD risk assessments. In this context, OCRA parameters such as duration, recovery, force, posture, and repetitiveness were analyzed. Observed process times of each factor were obtained from video records. Statistical analysis (ANOVA) revealed a positive (r=0.616) relationship on processing times with OCRA indexes in independent t-tests at significance level 0.05. To investigate the effects of WMSD risk, our Scheduling with Learning Effect under Risk Deterioration (SLE&RD) model was compared with six existing machine scheduling models in the literature. Detailed machine scheduling instances of 9 jobs with WMSD risks revealed that job sequences and makespan varied under different scenarios. This means that WMSD risks and OCRA factors affect machine scheduling with a deterioration effect. The results confirmed that when WMSD risks are included, actual process time and makespan move closer to observed process times. To obtain more accurate machine scheduling, which is close to real-life applications, WMSD risks, and learning rates should be considered simultaneously. The SLE&RD model is promising in machine scheduling for real-life problems and presents a holistic view of machine scheduling and WMSD risks.
Keywords: Machine Scheduling; Learning Rate; Risk Assessment; Risk Based Deterioration; WMSD; OHSAS; Ergonomics; OCRA; ANOVA (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10100-020-00708-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:cejnor:v:30:y:2022:i:3:d:10.1007_s10100-020-00708-3
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10100
DOI: 10.1007/s10100-020-00708-3
Access Statistics for this article
Central European Journal of Operations Research is currently edited by Ulrike Leopold-Wildburger
More articles in Central European Journal of Operations Research from Springer, Slovak Society for Operations Research, Hungarian Operational Research Society, Czech Society for Operations Research, Österr. Gesellschaft für Operations Research (ÖGOR), Slovenian Society Informatika - Section for Operational Research, Croatian Operational Research Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().