The influence of random interactions and decision heuristics on norm evolution in social networks
Declan Mungovan (),
Enda Howley () and
Jim Duggan ()
Additional contact information
Declan Mungovan: National University of Ireland
Enda Howley: National University of Ireland
Jim Duggan: National University of Ireland
Computational and Mathematical Organization Theory, 2011, vol. 17, issue 2, No 2, 152-178
Abstract:
Abstract In this paper we explore the effect that random social interactions have on the emergence and evolution of social norms in a simulated population of agents. In our model agents observe the behaviour of others and update their norms based on these observations. An agent’s norm is influenced by both their own fixed social network plus a second random network that is composed of a subset of the remaining population. Random interactions are based on a weighted selection algorithm that uses an individual’s path distance on the network to determine their chance of meeting a stranger. This means that friends-of-friends are more likely to randomly interact with one another than agents with a higher degree of separation. We then contrast the cases where agents make highest utility based rational decisions about which norm to adopt versus using a Markov Decision process that associates a weight with the best choice. Finally we examine the effect that these random interactions have on the evolution of a more complex social norm as it propagates throughout the population. We discover that increasing the frequency and weighting of random interactions results in higher levels of norm convergence and in a quicker time when agents have the choice between two competing alternatives. This can be attributed to more information passing through the population thereby allowing for quicker convergence. When the norm is allowed to evolve we observe both global consensus formation and group splintering depending on the cognitive agent model used.
Keywords: Social networks; Norms; Agent based modeling; Random dynamic interactions (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10588-011-9085-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:comaot:v:17:y:2011:i:2:d:10.1007_s10588-011-9085-7
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10588
DOI: 10.1007/s10588-011-9085-7
Access Statistics for this article
Computational and Mathematical Organization Theory is currently edited by Terrill Frantz and Kathleen Carley
More articles in Computational and Mathematical Organization Theory from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().