EconPapers    
Economics at your fingertips  
 

The impact of wind uncertainty on the strategic valuation of distributed electricity storage

Pedro Crespo Del Granado (), Stein Wallace and Zhan Pang ()

Computational Management Science, 2016, vol. 13, issue 1, 5-27

Abstract: The intermittent nature of wind energy generation has introduced a new degree of uncertainty to the tactical planning of energy systems. Short-term energy balancing decisions are no longer (fully) known, and it is this lack of knowledge that causes the need for strategic thinking. But despite this observation, strategic models are rarely set in an uncertain environment. And even if they are, the approach used is often inappropriate, based on some variant of scenario analysis—what-if analysis. In this paper we develop a deterministic strategic model for the valuation of electricity storage (a battery), and ask: “Though leaving out wind speed uncertainty clearly is a simplification, does it really matter for the valuation of storage?”. We answer this question by formulating a stochastic programming model, and compare its valuation to that of its deterministic counterpart. Both models capture the arbitrage value of storage, but only the stochastic model captures the battery value stemming from wind speed uncertainty. Is the difference important? The model is tested on a case from Lancaster University’s campus energy system where a wind turbine is installed. From our analysis, we conclude that considering wind speed uncertainty can increase the estimated value of storage with up to 50 % relative to a deterministic estimate. However, we also observe cases where wind speed uncertainty is insignificant for storage valuation. Copyright Springer-Verlag Berlin Heidelberg 2016

Keywords: Smart grid; Wind energy; Energy storage; Uncertainty; Valuation; Stochastic programming (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10287-015-0235-0 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:comgts:v:13:y:2016:i:1:p:5-27

Ordering information: This journal article can be ordered from
http://www.springer. ... ch/journal/10287/PS2

DOI: 10.1007/s10287-015-0235-0

Access Statistics for this article

Computational Management Science is currently edited by Ruediger Schultz

More articles in Computational Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:comgts:v:13:y:2016:i:1:p:5-27