Decomposition methods for multi-horizon stochastic programming
Hongyu Zhang (),
Ignacio E. Grossmann () and
Asgeir Tomasgard ()
Additional contact information
Hongyu Zhang: Norwegian University of Science and Technology
Ignacio E. Grossmann: Carnegie Mellon University
Asgeir Tomasgard: Norwegian University of Science and Technology
Computational Management Science, 2024, vol. 21, issue 1, No 32, 24 pages
Abstract:
Abstract Multi-horizon stochastic programming includes short-term and long-term uncertainty in investment planning problems more efficiently than traditional multi-stage stochastic programming. In this paper, we exploit the block separable structure of multi-horizon stochastic linear programming, and establish that it can be decomposed by Benders decomposition and Lagrangean decomposition. In addition, we propose parallel Lagrangean decomposition with primal reduction that, (1) solves the scenario subproblems in parallel, (2) reduces the primal problem by keeping one copy for each scenario group at each stage, and (3) solves the reduced primal problem in parallel. We apply the parallel Lagrangean decomposition with primal reduction, Lagrangean decomposition and Benders decomposition to solve a stochastic energy system investment planning problem. The computational results show that: (a) the Lagrangean type decomposition algorithms have better convergence at the first iterations to Benders decomposition, and (b) parallel Lagrangean decomposition with primal reduction is very efficient for solving multi-horizon stochastic programming problems. Based on the computational results, the choice of algorithms for multi-horizon stochastic programming is discussed.
Keywords: Stochastic programming; Multi-horizon stochastic programming; Lagrangean decomposition; Benders decomposition; Parallel computing; Primal reduction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10287-024-00509-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:comgts:v:21:y:2024:i:1:d:10.1007_s10287-024-00509-y
Ordering information: This journal article can be ordered from
http://www.springer. ... ch/journal/10287/PS2
DOI: 10.1007/s10287-024-00509-y
Access Statistics for this article
Computational Management Science is currently edited by Ruediger Schultz
More articles in Computational Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().