Distributional robustness, stochastic divergences, and the quadrangle of risk
R. Tyrrell Rockafellar ()
Additional contact information
R. Tyrrell Rockafellar: University of Washington
Computational Management Science, 2024, vol. 21, issue 1, No 34, 30 pages
Abstract:
Abstract In the distributional robustness approach to optimization under uncertainty, ambiguity about which probability distribution to use is addressed by turning to the worst that might occur with respect to a specified set of alternative probability distributions. Such sets are often taken to be neighborhoods of some nominal distribution with respect to a stochastic divergence like that of Kullback–Leibler or Wasserstein. Here that approach is coordinated with the fundamental quadrangle of risk with its quantifications not only of risk, but also regret, deviation and error, along with the functionals that dualize them. Stochastic divergences are introduced axiomatically and shown to constitute the duals of risk measures in a special class. Rules are uncovered for how regret measures for those risk measures can be obtained by appropriate extensions of the divergence functional. This reveals clearly the pattern in which the robustness functionals coming from divergence neighborhoods can be provided with other formulas featuring minimization instead of maximization, which is beneficial for optimization schemes. To get everything to fit, however the aversity properties of risk and the rest that, until now, have been imposed in the quadrangle of relationships must be relaxed. A suitable substitute, called subaversity, is found that works while only differing from aversity for functionals that are not positively homogeneous.
Keywords: Distributionally robust optimization; Coherent measures of risk; Stochastic divergences; Kullbach–Leibler divergence; Wasserstein divergence; Superquantile divergence; $$\varphi $$ φ -Divergences; Stochastic ambiguity; Ambiguity graduators; Divergence neighborhoods; Subaversity; Risk quadrangle (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10287-024-00516-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:comgts:v:21:y:2024:i:1:d:10.1007_s10287-024-00516-z
Ordering information: This journal article can be ordered from
http://www.springer. ... ch/journal/10287/PS2
DOI: 10.1007/s10287-024-00516-z
Access Statistics for this article
Computational Management Science is currently edited by Ruediger Schultz
More articles in Computational Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().