Is trust in artificial intelligence systems related to user personality? Review of empirical evidence and future research directions
René Riedl ()
Additional contact information
René Riedl: University of Applied Sciences Upper Austria
Electronic Markets, 2022, vol. 32, issue 4, No 12, 2051 pages
Abstract:
Abstract Artificial intelligence (AI) refers to technologies which support the execution of tasks normally requiring human intelligence (e.g., visual perception, speech recognition, or decision-making). Examples for AI systems are chatbots, robots, or autonomous vehicles, all of which have become an important phenomenon in the economy and society. Determining which AI system to trust and which not to trust is critical, because such systems carry out tasks autonomously and influence human-decision making. This growing importance of trust in AI systems has paralleled another trend: the increasing understanding that user personality is related to trust, thereby affecting the acceptance and adoption of AI systems. We developed a framework of user personality and trust in AI systems which distinguishes universal personality traits (e.g., Big Five), specific personality traits (e.g., propensity to trust), general behavioral tendencies (e.g., trust in a specific AI system), and specific behaviors (e.g., adherence to the recommendation of an AI system in a decision-making context). Based on this framework, we reviewed the scientific literature. We analyzed N = 58 empirical studies published in various scientific disciplines and developed a “big picture” view, revealing significant relationships between personality traits and trust in AI systems. However, our review also shows several unexplored research areas. In particular, it was found that prescriptive knowledge about how to design trustworthy AI systems as a function of user personality lags far behind descriptive knowledge about the use and trust effects of AI systems. Based on these findings, we discuss possible directions for future research, including adaptive systems as focus of future design science research.
Keywords: Artificial Intelligence (AI); Big Five traits; Machine learning (ML); Personality; Review; Trust; Trust propensity (search for similar items in EconPapers)
JEL-codes: D91 M15 O33 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s12525-022-00594-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:elmark:v:32:y:2022:i:4:d:10.1007_s12525-022-00594-4
Ordering information: This journal article can be ordered from
http://www.springer. ... ystems/journal/12525
DOI: 10.1007/s12525-022-00594-4
Access Statistics for this article
Electronic Markets is currently edited by Rainer Alt and Hans-Dieter Zimmermann
More articles in Electronic Markets from Springer, IIM University of St. Gallen
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().