Semiparametric and Nonparametric Testing for Long Memory: A Monte Carlo Study
Michael A Hauser
Empirical Economics, 1997, vol. 22, issue 2, 247-71
Abstract:
The finite sample properties of three semiparametric estimators, several versions of the modified rescaled range, MRR, and three versions of the GHURST estimator are investigated. Their power and size for testing for long memory under short-run effects, joint shorts and long-run effects, heteroscedasticity and t-distributions are given using Monte Carlo methods. The MRR with the Bartlett window is generally robust with the disadvantage of a relatively small power. The trimmed Whittle likelihood has high power in general and is robust except for large short-run effects. The tests are applied to changes in exchange rate series (daily data) of 6 major countries. The hypothesis of no fractional integration is rejected for none of the series.
Date: 1997
References: Add references at CitEc
Citations: View citations in EconPapers (21)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:empeco:v:22:y:1997:i:2:p:247-71
Ordering information: This journal article can be ordered from
http://www.springer. ... rics/journal/181/PS2
Access Statistics for this article
Empirical Economics is currently edited by Robert M. Kunst, Arthur H.O. van Soest, Bertrand Candelon, Subal C. Kumbhakar and Joakim Westerlund
More articles in Empirical Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().