Latent variables and propensity score matching: a simulation study with application to data from the Programme for International Student Assessment in Poland
Maciej Jakubowski
Empirical Economics, 2015, vol. 48, issue 3, 1287-1325
Abstract:
This paper examines how including latent variables can benefit propensity score matching. Latent variables can be estimated from the observed manifest variables and used in matching. This paper demonstrates the benefits of such an approach by comparing it with a method where the manifest variables are directly used in matching. Estimating the propensity score on the manifest variables introduces a measurement error that can be limited with estimating the propensity score on the estimated latent variable. We use Monte Carlo simulations to test how the proposed approach behaves under distinct circumstances found in practice, and then apply it to real data. Using the estimated latent variable in the propensity score matching limits the measurement error bias of the treatment effects’ estimates and increases their precision. The benefits are larger for small samples and with better information about the latent variable available. Copyright The Author(s) 2015
Keywords: Program evaluation; Matching; Treatment effects; Measurement error; Human capital; PISA; Tracking; C14; C15; C21 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00181-014-0814-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:empeco:v:48:y:2015:i:3:p:1287-1325
Ordering information: This journal article can be ordered from
http://www.springer. ... rics/journal/181/PS2
DOI: 10.1007/s00181-014-0814-x
Access Statistics for this article
Empirical Economics is currently edited by Robert M. Kunst, Arthur H.O. van Soest, Bertrand Candelon, Subal C. Kumbhakar and Joakim Westerlund
More articles in Empirical Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().