EconPapers    
Economics at your fingertips  
 

Thermal performance of three improved biomass-fired cookstoves using fuel wood, wood pellets and coconut shell

Pravin R. Sonarkar () and Ashish S. Chaurasia ()
Additional contact information
Pravin R. Sonarkar: Visvesvaraya National Institute of Technology
Ashish S. Chaurasia: Visvesvaraya National Institute of Technology

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2019, vol. 21, issue 3, No 20, 1429-1449

Abstract: Abstract India produces 500 million metric tones of renewable agricultural biomass every year, primarily used as a cooking fuel. Inefficient combustion of biomass is one of the major hindrances for the effective utilization of this vast reserve of energy. Inefficient combustion may occur due to several factors such as lack of proper air circulation, improper packing of fuel and excess moisture content in the fuel. This paper describes the performance evaluation of three improved stoves; natural draft TLUD stove and forced draft Purti and Mpurti stove using three kinds of biomass fuel as wood chips, wood pellets and coconut shell. It was found that the thermal efficiency of the natural draft TLUD stove was 26–27%, electric fan operated Purti stove was 44–45%, and solar fan operated Mpurti stove was 46–48%. This performance was assessed by the standard laboratory-based water boiling test method (WBT) to get thermal efficiency, burning rate, boiling point, specific fuel consumption and firepower. The economic analysis study was carried out to get an idea about the approximate cost that would be incurred per month on the fuel. All these desirable parameters are maximized for the efficient combustion of fuel. The gaseous components like CO and CO2 obtained over the fuel bed are analyzed using gas chromatography. Particulate matter (PM2.5) was measured by the fine particulate sampler. PM2.5 concentration for traditional cookstoves was much higher than studied forced draft Mpurti (510 ± 45 μg/m3) and Purti stove (677 ± 40 μg/m3). The reduction in the indoor concentration of PM2.5 for Mpurti is about 60–63% as compared to traditional stove. Mean CO emissions on a volumetric basis during the cold start and hot start phase were lowest for Mpurti forced draft stove (2.41%). The study reveals that clean cooking can be achieved using the forced draft Mpurti stove.

Keywords: Cookstoves; Forced draft; Specific fuel consumption; Thermal efficiency (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s10668-018-0096-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:21:y:2019:i:3:d:10.1007_s10668-018-0096-0

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668

DOI: 10.1007/s10668-018-0096-0

Access Statistics for this article

Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens

More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:endesu:v:21:y:2019:i:3:d:10.1007_s10668-018-0096-0