Estimation, decomposition and reduction potential calculation of carbon emissions from urban construction land: evidence from 30 provinces in China during 2000–2018
Xin Yang (),
Guangyin Shang () and
Xiangzheng Deng ()
Additional contact information
Xin Yang: Huazhong Agricultural University
Guangyin Shang: Huazhong Agricultural University
Xiangzheng Deng: Chinese Academy of Science
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2022, vol. 24, issue 6, No 23, 7958-7975
Abstract:
Abstract With 80% of the world's carbon emissions coming from urban areas and most part of the world still experiencing ever accelerated process of urbanization, China faces huge pressure to achieve the carbon emission peaking in 2030 and realizes the goal of carbon neutrality before 2050. Therefore, this study explored the spatial variability of CO2 emissions from urban construction land among 30 provinces in China, analyzed its driving factors and estimated their potentials for emission reductions from 2000 to 2018. The results demonstrate that: (1) according to the IPCC model, both the carbon emission amounts and carbon emission intensity from urban construction land showed an upward trend from 2000 to 2018. (2) Decomposition analysis of logarithmic mean Divisia index revealed that economic level has positive impact on carbon emissions. Energy efficiency and energy structure are the negative contribution factors to the carbon emissions, and the energy efficiency effect played a more important inhabiting factor. (3) The carbon emission reduction potential indexes was provided to estimate the carbon emission reduction potential of 30 provinces in China; it indicated that 17 provinces have their carbon emission reduction potential indexes less than 1, and they confront with mandatory push to reduce carbon emission under the current national policy. Finally, promoting clean energy and applying internet of things into energy transport corridor system and more low-carbon land planning policies are suggested to facilitate more effective implementation of carbon emissions reduction actions in China.
Keywords: Urban construction land; Carbon emissions; Spatiotemporal characteristics; Decomposition analysis; Carbon emission reduction potential (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10668-021-01769-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:endesu:v:24:y:2022:i:6:d:10.1007_s10668-021-01769-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10668
DOI: 10.1007/s10668-021-01769-3
Access Statistics for this article
Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development is currently edited by Luc Hens
More articles in Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().